
invenio-search Documentation
Release 1.4.0

CERN

Sep 18, 2020

Contents

1 User’s Guide 3
1.1 Installation . 3
1.2 Configuration . 3
1.3 Usage . 8

2 API Reference 15
2.1 API Docs . 15

3 Additional Notes 19
3.1 Contributing . 19
3.2 Changes . 21
3.3 License . 22
3.4 Contributors . 22

Python Module Index 25

Index 27

i

ii

invenio-search Documentation, Release 1.4.0

Elasticsearch management for Invenio.

Features:

• Allows Invenio modules to register indexes, aliases and index templates.

• Manages the creation and deletion of indices, aliases and templates.

• API for providing stable searches (e.g. prevents bouncing of search results).

• Maps JSONSchema URLs to Elasticsearch indexes.

• Supports Elasticsearch v6 and v7.

Further documentation is available at https://invenio-search.readthedocs.io/.

Contents 1

https://github.com/inveniosoftware/invenio-search/blob/master/LICENSE
https://travis-ci.org/inveniosoftware/invenio-search
https://coveralls.io/r/inveniosoftware/invenio-search
https://pypi.org/pypi/invenio-search
https://invenio-search.readthedocs.io/

invenio-search Documentation, Release 1.4.0

2 Contents

CHAPTER 1

User’s Guide

This part of the documentation will show you how to get started in using Invenio-Search.

1.1 Installation

Invenio-Search is on PyPI. When you install Invenio-Search you must specify the appropriate extras dependency for
the version of Elasticsearch you use:

$ # For Elasticsearch 6.x:
$ pip install invenio-search[elasticsearch6]

$ # For Elasticsearch 7.x:
$ pip install invenio-search[elasticsearch7]

Elasticsearch v2 and v5 support still exists in Invenio-Search but will be deprecated in future releases so using v6 or
v7 is recommended.

1.2 Configuration

The Elasticsearch client in Invenio is configured using the two configuration variables SEARCH_CLIENT_CONFIG
and SEARCH_ELASTIC_HOSTS.

Invenio-Search relies on the following two Python packages to integrate with Elasticsearch:

• elasitcsearch

• elasitcsearch-dsl

1.2.1 Hosts

The hosts which the Elasticsearch client in Invenio should use are configured using the configuration variable:

3

https://pypi.org/project/elasticsearch/
https://pypi.org/project/elasticsearch-dsl/

invenio-search Documentation, Release 1.4.0

invenio_search.config.SEARCH_ELASTIC_HOSTS = None
Elasticsearch hosts.

By default, Invenio connects to localhost:9200.

The value of this variable is a list of dictionaries, where each dictionary represents a host. The available keys in
each dictionary is determined by the connection class:

• elasticsearch.connection.Urllib3HttpConnection (default)

• elasticsearch.connection.RequestsHttpConnection

You can change the connection class via the SEARCH_CLIENT_CONFIG. If you specified the hosts key in
SEARCH_CLIENT_CONFIG then this configuration variable will have no effect.

Clusters

Normally in a production environment, you will run an Elasticsearch cluster on one or more dedicated nodes. Follow-
ing is an example of how you configure Invenio to use such a cluster:

SEARCH_ELASTIC_HOSTS = [
dict(host='es1.example.org'),
dict(host='es2.example.org'),
dict(host='es3.example.org'),

]

Elasticsearch will manage a connection pool to all of these hosts, and will automatically take nodes out if they fail.

Basic authentication and SSL

By default all traffic to Elasticsearch is via unencrypted HTTP because Elasticsearch does not come with built-in
support for SSL unless you pay for the enterprise X-Pack addition. A cheaper alternative to X-Pack is to simply setup
a proxy (e.g. nginx) on each node with SSL and HTTP basic authentication support.

Following is an example of how you configure Invenio to use SSL and Basic authentication when connecting to
Elasticsearch:

params = dict(
port=443,
http_auth=('myuser', 'mypassword'),
use_ssl=True,

)
SEARCH_ELASTIC_HOSTS = [

dict(host='node1', **params),
dict(host='node2', **params),
dict(host='node3', **params),

]

Self-signed certificates

In case you are using self-signed SSL certificates on proxies in front of Elasticsearch, you will need to provide the
ca_certs option:

4 Chapter 1. User’s Guide

https://elasticsearch-py.readthedocs.io/en/master/transports.html#elasticsearch.connection.Urllib3HttpConnection
https://elasticsearch-py.readthedocs.io/en/master/transports.html#elasticsearch.connection.RequestsHttpConnection

invenio-search Documentation, Release 1.4.0

params = dict(
port=443,
http_auth=('myuser', 'mypassword'),
use_ssl=True,
ca_certs='/etc/pki/tls/mycert.pem',

)
SEARCH_ELASTIC_HOSTS = [

dict(host='node1', **params),
...

]

Disabling SSL certificate verification

Warning: We strongly discourage you to use this method. Instead, use the method with the ca_certs option
documented above.

Disabling verification of SSL certificates will e.g. allow man-in-the-middle attacks and give you a false sense of
security (thus you could simply use plain unencrypted HTTP instead).

If you are using a self-signed certificate, you may also disable verification of the SSL certificate, using the
verify_certs option:

import urllib3
urllib3.disable_warnings(

urllib3.exceptions.InsecureRequestWarning
)

params = dict(
port=443,
http_auth=('myuser', 'mypassword'),
use_ssl=True,
verify_certs=False,
ssl_show_warn=False, # only from 7.x+

)
SEARCH_ELASTIC_HOSTS = [

dict(host='node1', **params),
...

]

The above example will also disable the two warnings (InsecureRequestWarning and a UserWarning) using
the ssl_show_warn option and urllib3 feature. Again, we strongly discourage you from using this method. The
warnings are there for a reason!

Other host options

For a full list of options for configuring the hosts, see the connection classes documentation:

• elasticsearch.connection.Urllib3HttpConnection (default)

• elasticsearch.connection.RequestsHttpConnection

Other options include e.g.:

• url_prefix

• client_cert

1.2. Configuration 5

https://elasticsearch-py.readthedocs.io/en/master/transports.html#elasticsearch.connection.Urllib3HttpConnection
https://elasticsearch-py.readthedocs.io/en/master/transports.html#elasticsearch.connection.RequestsHttpConnection

invenio-search Documentation, Release 1.4.0

• client_key

1.2.2 Client options

More advanced options for the Elasticsearch client are configured via the configuration variable:

invenio_search.config.SEARCH_CLIENT_CONFIG = None
Dictionary of options for the Elasticsearch client.

The value of this variable is passed to elasticsearch.Elasticsearch as keyword arguments and is
used to configure the client. See the available keyword arguments in the two following classes:

• elasticsearch.Elasticsearch

• elasticsearch.Transport

If you specify the key hosts in this dictionary, the configuration variable SEARCH_ELASTIC_HOSTS will
have no effect.

Timeouts

If you are running Elasticsearch on a smaller/slower machine (e.g. for development or CI) you might want to be a bit
more relaxed in terms of timeouts and failure retries:

SEARCH_CLIENT_CONFIG = dict(
timeout=30,
max_retries=5,

)

Connection class

You can change the default connection class by setting the connection_class key (e.g. use requests library
instead of urllib3):

from elasticsearch.connection import RequestsHttpConnection

SEARCH_CLIENT_CONFIG = dict(
connection_class=RequestsHttpConnection

)

Note, that the default urllib3 connection class is more lightweight and performant than the requests library. Only use
requests library for advanced features like e.g. custom authentication plugins.

Connection pooling

By default urllib3 will open up to 10 connections to each node. If your application calls for more parallelism, use the
maxsize parameter to raise the limit:

SEARCH_CLIENT_CONFIG = dict(
allow up to 25 connections to each node
maxsize=25,

)

6 Chapter 1. User’s Guide

https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch
https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch
https://elasticsearch-py.readthedocs.io/en/master/connection.html#elasticsearch.Transport

invenio-search Documentation, Release 1.4.0

Hosts via client config

Note, you may also use SEARCH_CLIENT_CONFIG instead of SEARCH_ELASTIC_HOSTS to configure the Elas-
ticsearch hosts:

SEARCH_CLIENT_CONFIG = dict(
hosts=[

dict(host='es1.example.org'),
dict(host='es2.example.org'),
dict(host='es3.example.org'),

]
)

Other client options

For a full list of options for configuring the client, see the transport class documentation:

• elasticsearch.Elasticsearch

• elasticsearch.Transport

Other options include e.g.:

• url_prefix

• client_cert

• client_key

1.2.3 Index prefixing

Elasticsearch does not provide the concept of virtual hosts, and thus the only way to use a single Elasticsearch cluster
with multiple Invenio instances is via prefixing index, alias and template names. This is defined via the configuration
variable:

Warning: Note that index prefixing is only prefixing. Multiple Invenio instances sharing the same Elasticsearch
cluster all have access to each other’s indexes unless you use something like https://readonlyrest.com or the com-
mercial X-Pack from Elasticsearch.

invenio_search.config.SEARCH_INDEX_PREFIX = ''
Any index, alias and templates will be prefixed with this string.

Useful to host multiple instances of the app on the same Elasticsearch cluster, for example on one app you can
set it to dev- and on the other to prod-, and each will create non-colliding indices prefixed with the corresponding
string.

Usage example:

in your config.py
SEARCH_INDEX_PREFIX = 'prod-'

For templates, ensure that the prefix __SEARCH_INDEX_PREFIX__ is added to your index names. This pattern
will be replaced by the prefix config value.

Usage example in your template.json:

1.2. Configuration 7

https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch
https://elasticsearch-py.readthedocs.io/en/master/connection.html#elasticsearch.Transport
https://readonlyrest.com

invenio-search Documentation, Release 1.4.0

{
"index_patterns": ["__SEARCH_INDEX_PREFIX__myindex-name-*"]

}

1.2.4 Index creation

Invenio will by default create all aliases and indexes registered into the invenio_search.mappings entry point.
If this is not desirable for some reason, you can control which indexes are being created via the configuration variable:

invenio_search.config.SEARCH_MAPPINGS = None
List of aliases for which, their search mappings should be created.

• If None all aliases (and their search mappings) defined through the invenio_search.mappings entry
point in setup.py will be created.

• Provide an empty list [] if no aliases (or their search mappings) should be created.

For example if you don’t want to create aliases and their mappings for authors:

in your `setup.py` you would specify:
entry_points={

'invenio_search.mappings': [
'records = invenio_foo_bar.mappings',
'authors = invenio_foo_bar.mappings',

],
}

and in your config.py
SEARCH_MAPPINGS = ['records']

1.3 Usage

Elasticsearch management for Invenio.

Allows retrieving records from a configurable backend (currently Elasticsearch is supported).

1.3.1 Initialization

To be able to retrieve information from somewhere, we first need to setup this somewhere. So make sure you have the
correct version of Elasticsearch installed and running (see Installation for supported Elasticsearch versions).

For running an Elasticsearch instance we recommend using Docker and the official images provided by Elastic:

$ docker run -d \
-p 9200:9200 \
-e "discovery.type=single-node" \
docker.elastic.co/elasticsearch/elasticsearch-oss:7.2.0

In this case, we are using Elasticsearch v7, so make sure to install invenio-search with the appropriate extras:

pip install invenio-search[elasticsearch7]

8 Chapter 1. User’s Guide

https://docs.docker.com/install/
https://www.docker.elastic.co/

invenio-search Documentation, Release 1.4.0

Creating index

To be able to run flask CLI commands later, we first need to have a Flask app, so create the following app.py file:

app.py
from flask import Flask
from invenio_search import InvenioSearch

app = Flask('myapp')
search = InvenioSearch(app)

This will create an empty index, which is not very useful, so let’s add some mappings. To not reinvent the wheel,
let’s reuse the mappings from the example application. Copy the examples directory from Invenio-Search. Add the
following line at the end of app.py file that you just created:

app.py
...
search.register_mappings('demo', 'examples.data')

The above code will search the directory examples/data and load all the mapping files it can find there for Elas-
ticsearch. You can read more about the Elasticsearch mappings in the official documentation.

Now we can finally create the indexes. Each file in the mappings will create a new index and a top-level alias with the
name demo.

$ export FLASK_APP=app.py
$ flask index init

You can verify that the indices were created correctly by performing the following requests:

$ # Fetch information about the "demo" alias
$ curl http://localhost:9200/demo
$ # Fetch information about the "demo-default-v1.0.0" alias
$ curl http://localhost:9200/demo-default-v1.0.0

Note: In earlier versions of Invenio-Search demo-default-v1.0.0was an index but is now a write alias pointing
to a suffixed index. Read more about write aliases and suffixes in the Aliases section.

Let’s index some data. Open flask shell and index a document with the following code:

import json
from invenio_search import current_search_client

current_search_client.index(
index='demo-default-v1.0.0',
body=json.dumps({

'title': 'Hello invenio-search',
'body': 'test 1'

})
)

No error message? Good! You can see that your new document was indexed by going to http://localhost:9200/demo/
_search.

1.3. Usage 9

https://github.com/inveniosoftware/invenio-search
https://www.elastic.co/guide/en/elasticsearch/guide/current/mapping-intro.html
http://localhost:9200/demo/_search
http://localhost:9200/demo/_search

invenio-search Documentation, Release 1.4.0

Searching for data

Let’s try to retrieve data in a programmatic way. Start a Python REPL and run the following commands.

First, let’s initialize app from the app.py file that we created in the previous step. Python REPL.

from app import app

We will need a Flask application context, so let’s push one:

app.app_context().push()

Create a custom search class that will search for example type of documents inside the demo alias (or you could use
the default RecordsSearch class to search for all document types in all indexes):

from invenio_search import RecordsSearch
class ExampleSearch(RecordsSearch):

class Meta:
index = 'demo'
fields = ('*',)
facets = {}

search = ExampleSearch()

Let’s find all documents:

response = search.execute()
response.to_dict()

If everything went well, you should now see that we have 1 hit - a document with Hello invenio-search title.
If you get the TransportError(404, 'index_not_found_exception', 'no such index') error
- it means that you forgot to create the index (follow the steps from Creating index to see how to setup an index and
add example data).

Creating a search page

Let’s create a simple web page where you can send queries to the Elasticsearch and see the results. Create a new
app.py file with a route.

app.py
from elasticsearch_dsl.query import QueryString
from flask import Flask, jsonify, request
from invenio_search import InvenioSearch, RecordsSearch

app = Flask('myapp')

search = InvenioSearch(app)

This line is needed to be able to call `flask index init`
search.register_mappings('demo', 'examples.data')

@app.route('/', methods=['GET', 'POST'])
def index():

search = RecordsSearch()
if 'q' in request.values:

search = search.query(QueryString(query=request.values.get('q')))

(continues on next page)

10 Chapter 1. User’s Guide

invenio-search Documentation, Release 1.4.0

(continued from previous page)

return jsonify(search.execute().to_dict())

Run example development server:

$ FLASK_DEBUG=1 FLASK_APP=app.py flask run -p 5000

And now you can perform search queries:

$ curl http://localhost:5000/?q=body:test

Filtering

To filter out some documents, you can create your own search class. Let’s try to remove all private documents from
the search results (by private documents, we understand all the documents that have public attribute set to 0).

Open flask shell and add one public and one private document to Elasticsearch:

import json
from invenio_search import current_search_client

Index public document
current_search_client.index(

index='demo-default-v1.0.0',
body=json.dumps({

'title': 'Public',
'body': 'test 1',
'public': 1

})
)
Index private document
current_search_client.index(

index='demo-default-v1.0.0',
body=json.dumps({

'title': 'Private',
'body': 'test 1',
'public': 0

})
)

Now, create a new search class that will return all documents of type example from the demo index and select only
the public ones (documents where public is set to 1):

app.py
from elasticsearch_dsl.query import Bool, Q, QueryString

class PublicSearch(RecordsSearch):
class Meta:

index = 'demo'
fields = ('*',)
facets = {}

def __init__(self, **kwargs):
super(PublicSearch, self).__init__(**kwargs)
self.query = Q(

(continues on next page)

1.3. Usage 11

invenio-search Documentation, Release 1.4.0

(continued from previous page)

Bool(filter=[Q('term', public=1)])
)

Update the index function and replace the search class with our new PublicSearch class:

app.py
@app.route('/', methods=['GET', 'POST'])
def index():

search = PublicSearch()
...

Now, you can search for documents with test in the body.

$ curl http://localhost:5000/?q=body:test

You should find only one document - the one with Public title.

This is a very simple example of how to filter out some records. If you want to define role based access rights control,
check the invenio-access module.

1.3.2 Miscellaneous

Elasticsearch version support

Major versions of Elasticsearch can include breaking changes to mappings so mappings for each version of Elastic-
search are stored in separate folders. Invenio-Search will use these mappings when creating the indices. For backwards
compatibility with existing Invenio modules and installations, Elasticsearch 2 mappings will be loaded from the root
level of the package directory. You can see a full example in the examples/data directory of the Invenio-Search
repository:

$ tree --dirsfirst examples/data

examples/data
+- demo # Elasticsearch 2 mappings
| +- authorities
| | +- authority-v1.0.0.json
| +- bibliographic
| | +- bibliographic-v1.0.0.json
| +- default-v1.0.0.json
+- v6
| +- demo # Elasticsearch 6 mappings
| | +- authorities
| | | +- authority-v1.0.0.json
| | +- bibliographic
| | | +- bibliographic-v1.0.0.json
| | +- default-v1.0.0.json
| +- __init__.py
+- v7
| +- demo # Elasticsearch 7 mappings
| | +- authorities
| | | +- authority-v1.0.0.json
| | +- bibliographic
| | | +- bibliographic-v1.0.0.json
| | +- default-v1.0.0.json

(continues on next page)

12 Chapter 1. User’s Guide

https://invenio-access.readthedocs.io/

invenio-search Documentation, Release 1.4.0

(continued from previous page)

| +- __init__.py
+-- __init__.py

Elasticsearch plugins

For convenience, you can install a plugin like Elastic HQ for easy introspection of your indexes and their content.
Otherwise, you can use curl as described in the official documentation.

Indexes and aliases

records

records-dataset-v1.0.0-1564056972

records-paper-v1.0.0-1564056972

records-dataset-v1.0.0

records-paper-v1.0.0

authors

authors-author-v1.0.0-1564056972

authors-author-v1.0.0

Indexes and aliases are organized as seen in the graph above. This example has three “concrete” indexes:

• authors-author-v1.0.0-1564056972

• records-dataset-v1.0.0-1564056972

• records-paper-v1.0.0-1564056972

They all share the suffix 1564056972. Each index though has also a corresponding “write alias” with its un-suffixed
name:

• authors-author-v1.0.0 -> authors-author-v1.0.0-1564056972

• records-dataset-v1.0.0 -> records-dataset-v1.0.0-1564056972

• records-paper-v1.0.0 -> records-paper-v1.0.0-1564056972

The other aliases in the example, records and authors, are top-level aliases pointing to all the indexes in their
same hierarchy:

• authors -> authors-author-v1.0.0-1564056972

1.3. Usage 13

http://www.elastichq.org/
https://www.elastic.co/guide/en/elasticsearch/guide/current/_talking_to_elasticsearch.html

invenio-search Documentation, Release 1.4.0

• records -> records-dataset-v1.0.0-1564056972

• records -> records-paper-v1.0.0-1564056972

Top-level aliases are aliases that can point to one or multiple indexes. The purpose of these aliases is to group indexes
and be able to perform searches over multiple indexes. These aliases should never be indexed to as the indexing will
fail if they point to multiple indexes.

The other type of alias is the write alias which is an alias that only points to a single index and has the same name
as the index without the suffix. This alias should be used whenever you need to index something. The name of
the write alias is the same as the un-suffixed index name to allow backwards compatibilty with previous versions of
Invenio-Search.

An index ends with a suffix which is the timestamp of the index creation time. The suffix allows multiple revisions of
the same index to exist at the same time. This is useful if you want to update the mappings of an index and migrate to a
new index. With suffixes, it’s possible to keep the two versions of the same index and sync them. When the migration
is completed the write alias can be pointed to the new index and the application will use the new index. This allows
in-cluster migrations without any downtime.

More information about index migrations can be found in the Invenio-Index-Migrator.

14 Chapter 1. User’s Guide

https://github.com/inveniosoftware/invenio-index-migrator

CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API Docs

Search engine API.

class invenio_search.api.BaseRecordsSearch(**kwargs)
Example subclass for searching records using Elastic DSL.

Use Meta to set kwargs defaults.

class Meta
Configuration for Search and FacetedSearch classes.

default_filter = None
Default filter added to search body.

Example: default_filter = DefaultFilter('_access.owner:"1"').

classmethod faceted_search(query=None, filters=None, search=None)
Return faceted search instance with defaults set.

Parameters

• query – Elastic DSL query object (Q).

• filters – Dictionary with selected facet values.

• search – An instance of Search class. (default: cls()).

get_record(id_)
Return a record by its identifier.

Parameters id – The record identifier.

Returns The record.

15

invenio-search Documentation, Release 1.4.0

get_records(ids)
Return records by their identifiers.

Parameters ids – A list of record identifier.

Returns A list of records.

with_preference_param()
Add the preference param to the ES request and return a new Search.

The preference param avoids the bouncing effect with multiple replicas, documented on ES documenta-
tion. See: https://www.elastic.co/guide/en/elasticsearch/guide/current /_search_options.html#_preference
for more information.

class invenio_search.api.BaseRecordsSearchV2(fields=(’*’,), default_filter=None,
**kwargs)

Base records search V2.

Sets the needed args in kwargs for the search.

get_record(id_)
Return a record by its identifier.

Parameters id – The record identifier.

Returns The record.

get_records(ids)
Return records by their identifiers.

Parameters ids – A list of record identifier.

Returns A list of records.

with_preference_param(preference)
Add the preference param to the ES request and return a new Search.

The preference param avoids the bouncing effect with multiple replicas, documented on ES documenta-
tion. See: https://www.elastic.co/guide/en/elasticsearch/guide/current /_search_options.html#_preference
for more information.

Parameters preference – A function that returns the preference value.

class invenio_search.api.DefaultFilter(query=None, query_parser=None)
Shortcut for defining default filters with query parser.

Build filter property with query parser.

query
Build lazy query if needed.

class invenio_search.api.MinShouldMatch
Work-around for Elasticsearch DSL problem.

The ElasticSearch DSL Bool query tries to inspect the minimum_should_match parameter, but understands
only integers and not queries like “0<1”. This class circumvents the specific problematic clause in Elasticsearch
DSL.

class invenio_search.api.PrefixedIndexList
Custom list type for avoiding double prefixing.

class invenio_search.api.PrefixedSearchMixin
Mixing to use index prefixing.

prefix_index(index)
Using PrefixedIndexList type to avoid double prefixing.

16 Chapter 2. API Reference

https://www.elastic.co/guide/en/elasticsearch/guide/current
https://www.elastic.co/guide/en/elasticsearch/guide/current

invenio-search Documentation, Release 1.4.0

class invenio_search.api.RecordsSearch(**kwargs)
Prefixed record search class.

Constructor.

class invenio_search.api.RecordsSearchV2(**kwargs)
Prefixed record search class.

Constructor.

invenio_search.api.UnPrefixedRecordsSearch
alias of invenio_search.api.BaseRecordsSearch

invenio_search.api.UnPrefixedRecordsSearchV2
alias of invenio_search.api.BaseRecordsSearchV2

2.1.1 Utilities

Utility functions for search engine.

invenio_search.utils.build_alias_name(index, prefix=None, app=None)
Build an alias name.

Parameters

• index – Name of the index.

• prefix – The prefix to prepend to the index name.

invenio_search.utils.build_index_from_parts(*parts)
Build an index name from parts.

Parameters parts – String values that will be joined by dashes (“-“).

invenio_search.utils.build_index_name(index, prefix=None, suffix=None, app=None)
Build an index name.

Parameters

• index – Name of the index.

• prefix – The prefix to prepend to the index name.

• suffix – The suffix to append to the index name.

• app – Flask app passed to prefix_index and suffix_index.

invenio_search.utils.prefix_index(index, prefix=None, app=None)
Prefixes the given index if needed.

Parameters

• index – Name of the index to prefix.

• prefix – Force a prefix.

• app – Flask app to get the prefix config from.

Returns A string with the new index name prefixed if needed.

invenio_search.utils.schema_to_index(schema, index_names=None)
Get index/doc_type given a schema URL.

Parameters

• schema – The schema name

2.1. API Docs 17

invenio-search Documentation, Release 1.4.0

• index_names – A list of index name.

Returns A tuple containing (index, doc_type).

invenio_search.utils.suffix_index(index, suffix=None, app=None)
Suffixes the given index.

Parameters

• index – Name of the index to prefix.

• suffix – The suffix to append to the index name.

• app – Flask app to get the “invenio-search” extension from.

Returns A string with the new index name suffixed.

invenio_search.utils.timestamp_suffix()
Generate a suffix based on the current time.

18 Chapter 2. API Reference

CHAPTER 3

Additional Notes

Notes on how to contribute, legal information and changes are here for the interested.

3.1 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

3.1.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/invenio-search/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

19

https://github.com/inveniosoftware/invenio-search/issues

invenio-search Documentation, Release 1.4.0

Write Documentation

Invenio-Search could always use more documentation, whether as part of the official Invenio-Search docs, in doc-
strings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/inveniosoftware/invenio-search/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

3.1.2 Get Started!

Ready to contribute? Here’s how to set up invenio-search for local development.

1. Fork the inveniosoftware/invenio-search repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/invenio-search.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv invenio-search
$ cd invenio-search/
$ pip install -e .[all]

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass tests:

$./run-tests.sh

The tests will provide you with test coverage and also check PEP8 (code style), PEP257 (documentation), flake8
as well as build the Sphinx documentation and run doctests.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s

-m "component: title without verbs"
-m "* NEW Adds your new feature."
-m "* FIX Fixes an existing issue."
-m "* BETTER Improves and existing feature."
-m "* Changes something that should not be visible in release notes."

$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

20 Chapter 3. Additional Notes

https://github.com/inveniosoftware/invenio-search/issues

invenio-search Documentation, Release 1.4.0

3.1.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests and must not decrease test coverage.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring.

3. The pull request should work for Python 2.7, 3.3, 3.4 and 3.5. Check https://travis-ci.org/inveniosoftware/
invenio-search/pull_requests and make sure that the tests pass for all supported Python versions.

3.2 Changes

Version 1.4.0 (released 2020-09-18)

• Adds new search class that can be initialised only from arguments to the constructor.

Version 1.3.1 (released 2020-05-07)

• Set Sphinx <3.0.0 because of errors related to application context.

• Stop using example app, keep only files referenced in the docs.

Version 1.3.0 (released 2020-03-10)

• Centralize dependency management via Invenio-Base.

Version 1.2.4 (released 2020-05-07)

• Set Sphinx <3.0.0 because of errors related to application context.

• Stop using example app, keep only files referenced in the docs.

Version 1.2.3 (released 2019-10-07)

• Changes the naming strategy for templates to avoid inclusion of slashes (“/”)

Version 1.2.2 (released 2019-08-08)

• Adds option ignore_existing which is ignoring indexes which are already in ES.

• Adds option to create/delete only selected indexes.

Version 1.2.1 (released 2019-07-31)

• Unpins urllib3 and idna since requests is not a direct dependency of the package now.

Version 1.2.0 (released 2019-07-29)

• Adds full Elasticsearch v7 support

• Better prefixing integration

• Introduces index suffixes and write aliases

• Refactored the way indices and aliases are stored and created

• invenio_search.utils.schema_to_index is deprecated (moved to invenio-indexer)

• Deprecates Elasticsearch v5

Version 1.1.1 (released 2019-06-25)

• Fixes prefixing for whitelisted aliases and the RecordSearch class.

• Adds basic Elasticsearch v7 support.

3.2. Changes 21

https://travis-ci.org/inveniosoftware/invenio-search/pull_requests
https://travis-ci.org/inveniosoftware/invenio-search/pull_requests

invenio-search Documentation, Release 1.4.0

Version 1.1.0 (released 2019-02-25)

• Deprecates Elasticsearch v2

• Adds support for Elasticsearch indices prefix

Version 1.0.2 (released 2018-10-23)

• Updates the urllib3 dependency version pin.

• Pins elasticsearch-dsl to <6.2.0, because of a breaking change in the handling of empty queries.

• Adds the SEARCH_CLIENT_CONFIG configuration variable, allowing more complex configuration to be
passed to the Elasticsearch client initialization.

Version 1.0.1 (released 2018-06-13)

• Fixes issues with idna/urllib3 dependencies conflicts.

• Adds SEARCH_RESULTS_MIN_SCORE configuration variable to allow excluding search results which have
a score less than the specified value.

Version 1.0.0 (released 2018-03-23)

• Initial public release.

3.3 License

MIT License

Copyright (C) 2015-2018 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note: In applying this license, CERN does not waive the privileges and immunities granted to it by virtue of its status
as an Intergovernmental Organization or submit itself to any jurisdiction.

3.4 Contributors

• Alexander Ioannidis

• Alizee Pace

• Chiara Bigarella

22 Chapter 3. Additional Notes

invenio-search Documentation, Release 1.4.0

• Chris Aslanoglou

• David Caro

• Dinos Kousidis

• Esteban J. G. Gabancho

• Harri Hirvonsalo

• Harris Tzovanakis

• Javier Delgado

• Jiri Kuncar

• Lars Holm Nielsen

• Leonardo Rossi

• Nicola Tarocco

• Nicolas Harraudeau

• Nikos Filippakis

• Paulina Lach

• Sami Hiltunen

• Sebastian Witowski

• Tibor Simko

3.4. Contributors 23

invenio-search Documentation, Release 1.4.0

24 Chapter 3. Additional Notes

Python Module Index

i
invenio_search, 8
invenio_search.api, 15
invenio_search.utils, 17

25

invenio-search Documentation, Release 1.4.0

26 Python Module Index

Index

B
BaseRecordsSearch (class in invenio_search.api),

15
BaseRecordsSearch.Meta (class in inve-

nio_search.api), 15
BaseRecordsSearchV2 (class in inve-

nio_search.api), 16
build_alias_name() (in module inve-

nio_search.utils), 17
build_index_from_parts() (in module inve-

nio_search.utils), 17
build_index_name() (in module inve-

nio_search.utils), 17

D
default_filter (inve-

nio_search.api.BaseRecordsSearch.Meta
attribute), 15

DefaultFilter (class in invenio_search.api), 16

F
faceted_search() (inve-

nio_search.api.BaseRecordsSearch class
method), 15

G
get_record() (inve-

nio_search.api.BaseRecordsSearch method),
15

get_record() (inve-
nio_search.api.BaseRecordsSearchV2 method),
16

get_records() (inve-
nio_search.api.BaseRecordsSearch method),
15

get_records() (inve-
nio_search.api.BaseRecordsSearchV2 method),
16

I
invenio_search (module), 8
invenio_search.api (module), 15
invenio_search.utils (module), 17

M
MinShouldMatch (class in invenio_search.api), 16

P
prefix_index() (in module invenio_search.utils), 17
prefix_index() (inve-

nio_search.api.PrefixedSearchMixin method),
16

PrefixedIndexList (class in invenio_search.api),
16

PrefixedSearchMixin (class in inve-
nio_search.api), 16

Q
query (invenio_search.api.DefaultFilter attribute), 16

R
RecordsSearch (class in invenio_search.api), 17
RecordsSearchV2 (class in invenio_search.api), 17

S
schema_to_index() (in module inve-

nio_search.utils), 17
SEARCH_CLIENT_CONFIG (in module inve-

nio_search.config), 6
SEARCH_ELASTIC_HOSTS (in module inve-

nio_search.config), 3
SEARCH_INDEX_PREFIX (in module inve-

nio_search.config), 7
SEARCH_MAPPINGS (in module invenio_search.config),

8
suffix_index() (in module invenio_search.utils), 18

27

invenio-search Documentation, Release 1.4.0

T
timestamp_suffix() (in module inve-

nio_search.utils), 18

U
UnPrefixedRecordsSearch (in module inve-

nio_search.api), 17
UnPrefixedRecordsSearchV2 (in module inve-

nio_search.api), 17

W
with_preference_param() (inve-

nio_search.api.BaseRecordsSearch method),
16

with_preference_param() (inve-
nio_search.api.BaseRecordsSearchV2 method),
16

28 Index

	User’s Guide
	Installation
	Configuration
	Usage

	API Reference
	API Docs

	Additional Notes
	Contributing
	Changes
	License
	Contributors

	Python Module Index
	Index

